激 光 第9卷 第9期

高强度激光对光学薄膜的破坏

范正修

(中国科学院上海光机所)

提要: 在薄膜破坏中起主要作用的是个别的脉冲尖峰。分析了薄膜结构对薄膜 受破坏的影响,以及 SiO₂ 保护膜在提高 ZrO₂/SiO₂ 膜的抗激光强度中的作用。

Optical thin film damage induced by high intensity laser beams

Fan Zhengxiu

(Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

Abstract: It is found that the damage of thin film is induced mainly by some individual peaks of the laser pulses. The effect of thin film construction on the damage, and the action of SiO₂ protecting coating in increasing the laser damage threshold of ZrO₂/SiO₂ film are analyzed.

一、引言

随着激光技术的发展,光学薄膜被激光 破坏的问题日益为人们所关注。国内外薄膜 和激光工作者,围绕这个问题开展了广泛深 入的研究,取得不少成果。但至今除了少数 工作之外^[1,2],有关大能量激光对薄膜的破坏 问题却很少报导。本文主要介绍 1.06 微米 大能量激光对光学薄膜的破坏现象;光学薄 膜的抗激光特性;并从薄膜的结构出发分析 了激光对薄膜破坏的机理。

二、激光对光学薄膜破坏过程的分析

大能量激光器输出的激光脉冲结构是比较复杂的,可以想象,由它引起薄膜的破坏过 程要比调 Q 激光的破坏过程更复杂些。

我们的实验在一台钕玻璃自由振荡脉冲

激光器上进行。激光波长为1.06 微米,输出 的最大能量为1000 焦耳,脉冲宽度约3毫 秒,发散角为5毫弧度,用焦距为400毫米的 单透镜聚焦,在焦点附近进行破坏实验。

图1给出激光脉冲波形的示波照片,整 个脉冲由几百个脉宽为几微秒、大小不等的 脉冲尖峰组成。薄膜在激光作用下发生破坏 时,能够发出等离子体闪光。闪光的强弱与 薄膜的破坏程度及薄膜的材料有关。用示波 器观测薄膜破坏时的闪光,发现破坏闪光也 是由分立的脉冲尖峰组成的,形状和结构与 激光尖峰相似并相对应。图2给出这种情况 的示波照相。

闪光的尖峰结构,说明薄膜破坏的功率 性质,只要脉冲尖峰的功率达到某一高度,一 个尖峰便可以完成薄膜破坏的全过程。

为了进一步说明尖峰结构对薄膜破坏的 决定作用,我们做了如下实验。在一块高速

收稿日期: 1981年9月28日。

(b) 闪光脉冲尖峰
图 2 激光脉冲和闪光脉冲的对比 (时标: 10 微秒/格)

转动的扇板上, 开一个一定宽度的狭缝。 当激光通过扇板时, 就被扇板所切割, 用切割出的激光脉冲进行薄膜破坏实验, 可以得到薄膜的破坏阈值与脉冲宽度的关系。图3给出 ZrO₂ 单层膜的实验结果。

在我们的实验条件下,薄膜破坏的功率 阈值是一个常数。所以激光脉冲的结构尽管 很复杂,但是在薄膜破坏过程中起关键作用 的,却是其中功率峰值的最大脉冲。其余的 激光脉冲虽然促使薄膜破坏的进一步发展, 但对薄膜初始破坏的贡献却是次要的。这就 是说,如果在整个激光脉冲中,所有尖峰的 功率都低于薄膜的破坏阈值,那么不论激光 的脉冲宽度多宽,激光输出的能量多大,都不 能使薄膜破坏。从这个意义上说,自由振荡激 光对薄膜的破坏与一定脉冲宽度的单脉冲激

图 3 ZrO₂ 膜的破坏阈值与切割脉冲宽度的关系 〇一功率破坏阈值; ×一能量破坏阈值

光没有什么不同,研究微秒级光脉冲对光学 薄膜的作用,基本上可以反映出这种激光导 致薄膜破坏的本质。

三、光学薄膜结构的影响

激光对薄膜的破坏不仅与激光脉冲的特性(如能量、脉冲宽度等)有关,而且与薄膜本身的性质也有关。光学薄膜的体吸收、表面吸收和杂质吸收是引起薄膜破坏的重要原因,已有许多工作对这一点进行了研究^[3~6]。此外,我们认为薄膜的结构也是影响薄膜抗激光强度的重要因素。关于这个问题,一些工作者从不同方面进行过论述^[1,6,7]。我们从以下几个方面进行研究,得到一些结果。

1. 薄膜表面形貌的影响

实验证明同一种薄膜,结晶颗粒粗糙,破 坏阈值低。表1给出立方结构 β 型的 ZnS 薄膜颗粒度大小不同时的破坏阈值。可以看 出,在颗粒减少一半的情况下,破坏阈值提高 了 1/3 以上。所以可以设想通过减少颗粒度 来提高薄膜的抗激光强度。例如通常采用的 ZrO₂/SiO₂ 反射膜,在用环形电子枪蒸发时, 由于二次电子对表面的轰击作用,薄膜的颗 粒增大且表面非常粗糙(图 4(a))。改用 磁

表1 ZnS 膜的结晶颗粒大小对破坏阈值的影响

颗粒度(Å)	200~400	200~320	200~280	<200
破坏阈值 (焦耳/毫米 ²)	36.6	44.9	46.6	50.9

 (b) 磁偏转枪蒸发
 图 4 环形枪和磁偏转枪蒸发的 ZrO₂ 膜的表面形貌 (20000×)

偏转电子枪后,抑制了二次电子对膜面的作用,使膜面变得细致(图 4(b)),薄膜抗激光强度大大增加。

2. 薄膜结晶构造的影响

淀积在玻璃基体上的薄膜,除了少数几 种呈无定型结构外,多数呈多晶态,其晶型与 大块材料相近。但是,薄膜的结构又随淀积 条件变化而变化,改变淀积条件,可以改变某 些薄膜的晶型。例如ZrO2 膜的结晶构造,就 随温度的变化而变化,不同的基体温度或退 火温度,可以使膜的结晶从无定形变为立方 晶系。表2给出 800 Å 厚的 ZrO2 膜不同结 晶构造时的破坏阈值。

表 $2 \operatorname{ZrO}_2$ 薄膜的结晶构造对破坏阈值的	影响
--	----

晶型	无定型	单斜	立方+ 单斜	立方+ 亚稳	立方
破坏阈值 (焦耳/毫米²)	19.4	17	28	40	70

• 584 •

由表2的结果可以看出, ZrO2的各种晶型中以立方晶型破坏阈值最高。结晶构造对破坏阈值的影响,在激光破坏的研究中是有意义的。但是,在各种薄膜当中, ZrO2 膜结晶状态的不稳定性是比较典型的。对其他薄膜来说,人为控制某种晶系是比较困难的。所以通过改变晶系来提高薄膜的抗激光强度,不是对每种薄膜都可行的。

四、薄膜剖面结构的影响

在薄膜的结构分析中,其剖面结构的观测是非常重要的。它不仅可以形象地反映出 薄膜的结构状态,而且可以显示出薄膜的生 长状况及膜层与基体、膜层与膜层之间的界 面状态。

大多数薄膜的剖面结构都是柱状生长的,随着膜层厚度的增加,柱体结构越来越粗糙,缺陷越来越多。而SiO2膜却是微粒状态生长,其结构细致均匀。其微粒的大小随厚度的变化不大。薄膜生长状况不同,其破坏阈值与厚度的关系也不同。表3给出ZrO2腹和SiO2的有关实验结果。

表3 ZrO2和 SiO2的破坏阈值与厚度的关系

物展得因和	厚 度 (λ)						
材 料	1/4	1/2	3/4	1			
率成前规约	阈值(焦耳/毫米²)						
SiO_2	120	120	120	110			
ZrO_2	90	50	22	20			

从表3可以看出,在相当大的范围内, SiO₂ 膜的破坏阈值几乎不变化,而 ZrO₂ 膜 却随着厚度的增加很快降低。SiO₂ 膜的这 种性质决定了SiO₂ 膜不仅有相当高的抗激 光强度,而且破坏阈值相当稳定。在所有的 激光薄膜中,这种特性是十分突出的。

五、SiO2保护膜在抗激光 破坏中的作用

 $ZrO_2/SiO_2 膜系是一种激光硬膜,它不$ 仅机械强度高,而且在巨脉冲激光中有 $比一般软膜(例如<math>ZnS/MgF_2$ 膜)高得多的 破坏阈值。然而对自由振荡激光束来说, ZrO_2/SiO_2 膜的破坏阈值却往往比 ZnS/MgF_2 膜低。在我们大量的实验中, ZnS/MgF_2 膜的破坏阈值大多在 20~60 焦耳/毫 米²,而 ZrO_2/SiO_2 高反射膜一般都不高于 20 焦耳/毫米²⁽⁷⁾。

为了提高 ZrO₂/SiO₂ 膜的破坏阈值, 我 们采用了在这种膜面上增镀 SiO₂ 保 护 膜 的 办法。实验证明,随着 SiO₂ 膜厚度的不同, 其保护效果也不同。表 4 给出 SiO₂ 保护膜 不同厚度时 ZrO₂/SiO₂ 膜系的破坏阈值^[7]。

表 4 不同厚度的 SiO₂ 保护膜对 ZrO₂/SiO₂ 高反射膜的保护效果(主膜系为(HL)"H)

SiO ₂ 保护膜厚度 (λ=1.06 微米)	0	$\lambda/2$,λ	3λ/2	2λ	5λ/2
破坏阈值 (焦耳/毫米 ²)	8	13	14	25	31	30

从表 4 的结果可以看出,必须在足够的 厚度下,SiO₂ 保护膜才能充分地发挥作用, 在某一厚度以后再增加 SiO₂ 膜的厚度,效果 又会变差。这个厚度的具体数值与淀积条件 和主膜系薄膜的状况有关,一般在 2λ 左右。

进一步研究 SiO₂ 膜在激光破坏中的作用,还发现 SiO₂ 保护膜不仅可以提高 ZrO₂/SiO₂ 膜系的抗激光强度,而且适当增加主膜系中 SiO₂ 层的厚度也可以提高薄膜的抗激光强度。表 5 给出 ZrO₂/SiO₂ 部份反射膜的实验结果^[77]。

从薄膜的结构出发不难对 SiO₂ 膜的 保 护作用进行解释。

观察 ZrO₂/SiO₂ 膜的表面结构可以看 出,不经保护的薄膜表面粗糙,颗粒度大,而 镀过保护膜之后,表面变得细致光滑(图5)。 随着保护膜的厚度增加,表面变得越来越好。 大约在厚度为 2~3λ 时达到最佳程度。如果 保护膜的厚度进一步增加,膜面会出现细小 的裂纹。把 ZrO₂/SiO₂ 膜表面结构上的这种 变化和其抗激光强度的提高对照起来加以考 查很容易看出,保护膜之所以能提高薄膜的 破坏阈值,主要是它改善了薄膜的表面结构。

对 ZrO₂/SiO₂ 膜的剖面结构进行仔细观察,发现 SiO₂ 膜呈微粒状生长,所以它不仅可以改善薄膜的表面结构,而且可以嵌入 ZrO₂ 层中填充 ZrO₂ 膜的缺陷,改善了 ZrO₂/ SiO₂ 界面特性。随着膜系中 SiO₂ 层 厚度的 增加,ZrO₂/SiO₂ 界面的结构也会得到更好 的改善,能使 ZrO₂ 膜在比较细密的基底上继 续淀积,从而使整个膜系的结构得到改善(图

(a) 不镀保护膜

 (b) SiO₂保护膜厚度为 3λ/2
 图 5 ZrO₂/SiO₂ 高反射膜表面形貌分析 (2000×)

膜 系	HLH	H5LH	(HL) ² H	$(\mathrm{H5L})^{2}\mathrm{H}$	(HL) ² H4L	(H5L) ² H4I	
破坏阈值(焦耳/毫米2)	30	52	16	28	80	110	

(表中的 HL 分别为 $\lambda/4$ 厚的 ZrO₂ 膜和 SiO₂ 膜, $\lambda = 1.06$ 微米)

6)。在这种条件下,薄膜的破坏阈值也就自 然会提高了。

上面提到在自由振荡激光的作用下, ZrO₂/SiO₂ 膜的破坏阈值低于 ZnS/MgF₂。 这主要是 ZnS 膜的致密性比 ZrO₂ 膜好的缘 故。在一般淀积条件下, ZnS 的填充密度接 近于 1^[8], 说明 ZnS 的结构接近大块材料, 而 ZrO₂ 膜一般却不大于 0.8^[8], 这说明在 ZrO₂ 膜中存在大量的缺陷和孔洞。这样, 当自由振 荡激光脉冲作用在薄膜上时,可以在足够长 的脉冲时间内, 通过缺陷和孔洞, 使雪崩离化 过程得到充分发展,导致薄膜吸收数量级的 增加^[9]。尽管 ZrO₂ 膜熔点比较高, 强度比较 大, 但由于更高的非线性吸收抵销了它的

图 6 ZrO₂/SiO₂反射膜剖面结构 (2000×)

(上接第588页)

由上面的式子可看出,在这种情况下参考光 强与测量光强之比为常数。图4是入射角约 15°时参考光功率与测量光功率随时间变化 的曲线。二者的变化基本一致。

由以上的分析可得出如下结论:在使用 内腔 He-Ne 激光器(6328 埃)或其他有类似 偏振性质的激光器时,如果需要引出参考光 束来监视激光器功率的变化或进行归一化的 这些长处,它的破坏阈值反而比ZnS膜 低。既然如此,为什么在巨脉冲激光作用 下,ZrO₂/SiO₂膜的破坏阈值又比ZnS/ MgF₂膜高得多呢?这一点需要从巨脉冲激 光的特点来分析。对巨脉冲激光来说,其脉 冲宽度一般只有10⁻⁹秒。但功率密度却高 达10⁹瓦/厘米²,甚至更高一些。在这种条 件下,薄膜内部的大缺陷和大孔洞可能还来 不及充分发挥作用,虽然有足够的能量聚集 在它上面。这样ZrO₂熔点高、强度大的优 点便得到充分发挥,表现出比ZnS膜高得多 的破坏阈值。

参考文献

- [1] А. Я. Кузнецов, И. С. Варнашева и др.; ОМП. 1972, №3, 39.
- [2] А. Я. Кузнецов, А. Я. Поплавский и др.; ЖТФ, 1970,40, №1, 170.
- [3] J. Beckev et al.; AD633554.
- [4] E. S. Bliss; Optic Electronics, 1971, 3, No. 2, 99.
- [5] N. Bloembergn; Appl. Opt, 1972, 12, No. 4, 1032.
- [6] D. Milam, A. Bradbury; Laser Focus, 1973, No. 12, 41.
- [7] 上海光机所研究报告集,第三集(光学薄膜),1976 年。
- [8] Elmar. Ritter; Appl. Opt., 1976, 15, No. 10, 2318.
- [9] B. S. Sharma; Canad. J. Phys., 1970, 48, No. 10, 1178.

功率测量时,必须放置玻璃平板与光轴的夹角小于15°时才能得到满意的结果。

考 文 献

- [1] D. Lenstra; Physica, 1978, 95C, 405~411.
- [2] D. Lenstra; Phys. Reports, 1980, 59, No. 3, 301~373.
- [3] Eastr K. Hasle; Opt. Commun., 1979, 31, No. 2, 206.